Fuzzy System Reliability Analysis Using Triangular Fuzzy Numbers Based on Statistical Data

نویسندگان

  • Jing-Shing Yao
  • Jin-Shieh Su
  • Teng-San Shih
چکیده

In this article, we use the fuzzy concept to consider the reliability of serial system and the reliability of parallel system. Since the population reliability Rj of the subsystem Pj (j = 1, 2, ..., n) is unknown, if we use the point estimate j R to estimate Rj from the statistical data in the past, we don’t know the probability of the error j R − Rj. Moreover, the reliability of the system may fluctuate around the point estimate j R during a time interval. It follows that to use the point estimate j R to estimate the population reliability Rj is not suitable for the real cases. Therefore, it is more desirable to use the statistical confidence interval. Moreover, the probability of the error j R − Rj can also be solved. In this paper, we use the statistical confidence interval instead of the point estimate. We transfer the statistical confidence interval into the triangular fuzzy number. Through these triangular fuzzy numbers, we consider the fuzzy reliability system. We fuzzify the reliability of both the serial and parallel systems. Through defuzzifying the fuzzy reliability using the signed distance method; we get a fuzzy estimate of reliability in the two systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability analysis of a robotic system using hybridized technique

In this manuscript, the reliability of a robotic system has been analyzed using the available data (containing vagueness, uncertainty, etc). Quantification of involved uncertainties is done through data fuzzification using triangular fuzzy numbers with known spreads as suggested by system experts. With fuzzified data, if the existing fuzzy lambda–tau (FLT) technique is employed, then the comput...

متن کامل

Reliability Analysis of k-out-of-n : G System Using Triangular Intuitionistic Fuzzy Numbers

In the present paper, we analyze the vague reliability of k-out-of-n : G system (particularly, series and parallel system) with independent and non-identically distributed components, where the reliability of the components are unknown. The reliability of each component has been estimated using statistical confidence interval approach. Then we converted these statistical confidence interval int...

متن کامل

A Data Envelopment Analysis Model with Triangular Intuitionistic Fuzzy Numbers

DEA (Data Envelopment Analysis) is a technique for evaluating the relative effectiveness of decision-making units (DMU) with multiple inputs and outputs data based on non-parametric modeling using mathematical programming (including linear programming, multi-parameter programming, stochastic programming, etc.). The classical DEA methods are developed to handle the information in the form of cri...

متن کامل

Construction of α-cut fuzzy X control charts based on standard deviation and range using fuzzy triangular numbers

Control charts are one of the most important tools in statistical process control that lead to improve quality processes and ensure required quality levels. In traditional control charts, all data should be exactly known, whereas there are many quality characteristics that cannot be expressed in numerical scale, such as characteristics for appearance, softness, and color. Fuzzy sets theory is a...

متن کامل

Reliability optimization problems with multiple constraints under fuzziness

In reliability optimization problems diverse situation occurs due to which it is not always possible to get relevant precision in system reliability. The imprecision in data can often be represented by triangular fuzzy numbers. In this manuscript, we have considered different fuzzy environment for reliability optimization problem of redundancy. We formulate a redundancy allocation problem for a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Inf. Sci. Eng.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2008